EXPERIMENT 1: SIMPLE HARMONIC MOTION

THEORY

Simple Pendulum

Any motion which repeats itself in equal intervals of time is called periodic motion.

Simple harmonic motion is the motion of a simple harmonic oscillator. The motion is periodic, as it repeats itself at standart intervals in a specific manner, with constant amplitude.

It is characterised by its amplitude which is always positive and depends on how motion starts initially, its period which is the time for a single oscillation and its phase which depends on displacement as well as velocity of the moving object.

$$
x=A \cos (w t+\varphi)
$$

$x=$ displacement $\quad A=$ amplitude $\quad w=$ angular velocity

$$
t=\text { elapsed time } \quad \varphi=\text { phase }
$$

For small angle

$$
\begin{array}{cc}
\sin \theta=\frac{x}{l} & \\
T=2 \pi \sqrt{\frac{l}{g}} & f=\frac{1}{T}
\end{array} f=\frac{1}{2 \pi} \sqrt{\frac{g}{l}}
$$

- The period of pendulum is independent of its own mass and amplitude of the oscillation.
- The period of the pendulum is depends on its length.

PROCEDURE AND CALCULATIONS

For $\mathrm{m}_{1}=50 \mathrm{~g}$ mass

1. Adjust the string length.
2. Initiate oscillations by displacing the mass with a small angle.
3. Determine the period by timing oscillations.(For 10 oscillations) Each oscillation involves a complete swing back to the starting position. The period T is determined by counting the number N of complete oscillations in a time t :

$$
T=\frac{t}{N} \quad ; \quad N=10
$$

4. Calculate the period by using length of the string.
5. Compare these two values of the period and calculate percentage difference.
6. Calculate the acceleration of gravity by using the T value found in " 3 " and the string length.
7. Plot the graph T^{2} vs L .

- Change the mass and repeat the steps 1-7.
- Change the length of string and repeat the steps 1-7 for two different masses.

$\mathrm{m}_{1}=$	$\mathrm{l}_{1}=$	$\mathrm{l}_{2}=$	$1_{3}=$	$1_{4}=$
$\mathrm{t}(\mathrm{s})$				
$\mathrm{T}_{\text {exp }}$				
$\mathrm{T}_{\text {theo }}$				
PE				
$\mathrm{g}\left(\mathrm{m} / \mathrm{s}^{2}\right)$				

$\mathrm{m}_{2}=$	$\mathrm{l}_{1}=$	$\mathrm{l}_{2}=$	$\mathrm{l}_{3}=$	$\mathrm{l}_{4}=$
$\mathrm{t}(\mathrm{s})$				
$\mathrm{T}_{\exp }$				
$\mathrm{T}_{\text {theo }}$				
PE				
$\mathrm{g}\left(\mathrm{m} / \mathrm{s}^{2}\right)$				

