EXPERIMENT 1: SIMPLE HARMONIC MOTION

THEORY

Simple Pendulum

Any motion which repeats itself in equal intervals of time is called periodic motion.

Simple harmonic motion is the motion of a simple harmonic oscillator. The motion is periodic, as it repeats itself at standart intervals in a specific manner, with constant amplitude.

It is characterised by <u>its amplitude</u> which is always positive and depends on how motion starts initially, <u>its period</u> which is the time for a single oscillation and <u>its phase</u> which depends on displacement as well as velocity of the moving object.

$$x = A \cos(wt + \varphi)$$

x = displacement A = amplitude w = angular velocityt = elapsed time $\varphi = phase$

For small angle

$$\sin \theta = \frac{x}{l}$$

$$T = 2\pi \sqrt{\frac{l}{g}} \qquad f = \frac{1}{T} \qquad f = \frac{1}{2\pi} \sqrt{\frac{g}{l}}$$

- The period of pendulum is independent of its own mass and amplitude of the oscillation.
- The period of the pendulum is depends on its length.

PROCEDURE AND CALCULATIONS

For m_1 =50g mass

- 1. Adjust the string length.
- 2. Initiate oscillations by displacing the mass with a small angle.
- 3. Determine the period by timing oscillations.(For 10 oscillations) Each oscillation involves a complete swing back to the starting position. The period T is determined by counting the number N of complete oscillations in a time t:

$$T = \frac{t}{N} \qquad ; \qquad N = 10$$

- 4. Calculate the period by using length of the string.
- 5. Compare these two values of the period and calculate percentage difference.
- 6. Calculate the acceleration of gravity by using the T value found in "3" and the string length.
- 7. Plot the graph T^2 vs L.

- Change the mass and repeat the steps 1-7.
- Change the length of string and repeat the steps 1-7 for two different masses.

m ₁ =	11=	l ₂ =	13=	14=
t(s)				
T _{exp}				
T _{theo}				
PE				
$g(m/s^2)$				

m ₂ =	11=	12=	13=	14=
t(s)				
T _{exp}				
T _{theo}				
PE				
$g(m/s^2)$				